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PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ROS OTON
4. NONLINEAR PARABOLIC PDE AND THE NAVIER-STOKES EQUATIONS

Prove the Banach fixed point theorem: Let Z be a complete normed space, and assume
we have a contraction mapping, that is, ¥ : Z — Z satisfying

| (v) — W (w)|| <O|lv—w|| Yo, w € Z
for some 6 < 1. Then, ¥ has a fixed point v € Z, that is, ¥(u) = u.

(2 points)

Let u(z,t) be the solution of the heat equation in R"
{atu—Au =0 in R" x (0,00)
u(z,0) = uo(z) for t=0.
given by
_Jz—y|?

u(x,t) :1/(47Tt)"/2/ uo(y)e™ 2 dy

1 rove at, Ior any bounded and unliormly continuous initial condition u, we nave
i) P that, f b ded and unif | ti initial diti h
Jult) — ol pm@ny — 0 as £ 10
and
[w(®) oo (rr) < [[to ]| Lo (mr)

(ii) Deduce that, for any k € N, if u, € C*(R™) and all its derivatives (up to order k)
are bounded and uniformly continuous then

Ju(t) — uollcr@ny — 0O as t]0
and
Ju(®)llor@ny < lluollor@ny

Hint: To prove part (ii), apply (i) to the derivatives of w.

(4 points)

Let u(z,t) be the solution of the heat equation (0.1)) in R™, given by (0.2).
Prove that, for any k € N, if u, € C*(R") and all its derivatives (up to order k) are
bounded then o

[u(®) |l ortr(mny < mHUoHck(Rn)

for some constant C' depending only on n and k.
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(3 points)
(4) Let u,v € C*(Q x [0,7T]) be two solutions of the nonlinear Schrédinger equation

i0u—Au = f(u) in Qx (0,7
u = 0 on 00 x [0,7T]

with f € C*°. Prove that
lu(t) = o(®)]l L2y < ¢ lu(0) = v(0)] 20

for some constant C.

(4 points)
(5) Let u € C*°(2 x (0,T)) be a solution of
{ Ou—Au = f(u) in Qx(0,7)
u = 0 on 020 x (0,7)
Prove that
G |GV =) = = [ o
where F/ = f.
Note: This means that the “energy” of u is decreasing with time.
(3 points)

(6) A stationary solution U(z) of

-AU = f(U) in Q
U = 0 on 0Of)

is called asymptotically stable if there is an & > 0 such that for any u, € C(f2) satisfying
U, = 0 on 0f) and

uo — Ullpeo(a) < €

we have that the solution u(x,t) of

ou—Au = f(u) in Qx(0,7)
(0.3) u = 0 on 900 x(0,T)
u(z,0) = uo(x) for t=

exists for all time (that is, 7' = co) and

tl_i)m u(z,t) = U(x) uniformly for z € Q.

Use the previous exercise to prove that if U € C?(Q) is an asymptotically stable
solution then

EWU)<EWUH+n) forallne C(Q) with [[n]lpe@) <,
where £(w) = [, (3|Vw]?> — F(w)).

(3 points)



(7) Let u € C(Q x [0,T]) be a solution of

ou—Au = —u? in Qx (0,7
u = 0 on 090 x (0,7T].

Prove that u(x,T") < 1/T, regardless of the initial data at ¢ = 0.

Hint: Use the comparison principle.

(3 points)

(8) The KPP equation
{ Oou —Au = u(l —u) in R"™x (0,7)
u(z,0) = uo(x) for t=0
is one of the most classical reaction-diffusion PDEs, and models population dynamics.
(i) Prove that if 0 < uo(z) < 1 for all z € Q then 0 < u(z,t) < 1 for allt >0, z € Q.
(ii) Prove that for any e € S"~! there is a travelling-wave solution of the type

1

u(z,t) =v(x - e — ct), v(z) = 1+ e P2)2

for some 8 > 0 and some ¢ > 0.

(3 points)
(9) Derive the Navier-Stokes equations from physical principles.
(3 points)
(10) Let @ € C*(Q) be given.
(i) Prove that there exist functions uw, : @ — R™ and ¢ : Q — R, such that
W= U-To + Vq
divu, =01n Q
and with ¢ = 0 on 01.
(ii) Prove that such representation for « is unique. Thus, we may denote
w, = 1,
the Leray projection of .
(4 points)

(11) Let @ € C°°(Q2 x (0,T)) be a solution of the Navier-Stokes equations

i+ (4-V)i = vAu—Vp in Qx(0,7)
(0.4) divii = 0 in Qx(0,T)
u = 0 on 00 x (0,7)

d 2
— ul“dxr <
dt/g’“‘ v=0

Prove that

(3 points)



(12) Let @ € C®(R? x [0,T)) be any solution of the Navier-Stokes equations (0.4)) in Q = R?
and assume that both @ and its derivatives converge uniformly to zero as |z| — oo.

(i) Prove that, if we denote @ = (u1,us), then the vorticity
w(z,t) := curld = 0y, ug — Og,u1,

solves the PDE
Ow—+1i-Vwo=vAw in R?x(0,7T).

(ii) Deduce, by using the maximum principle (see Exercise 20 from Chapter 3), that
w2y < l[wollLoezy  forallt € (0,7),
where w, is the vorticity at time ¢ = 0.

Note: This is the key estimate that allows to prove global existence (T = oo) for the
Navier-Stokes equations in 2D.

(3 points)
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