
PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ROS OTON

4. Nonlinear parabolic PDE and the Navier-Stokes equations

(1) Prove the Banach fixed point theorem: Let Z be a complete normed space, and assume
we have a contraction mapping, that is, Ψ : Z → Z satisfying

‖Ψ(v)−Ψ(w)‖ ≤ θ‖v − w‖ ∀v, w ∈ Z
for some θ < 1. Then, Ψ has a fixed point u ∈ Z, that is, Ψ(u) = u.

(2 points)

(2) Let u(x, t) be the solution of the heat equation in Rn

(0.1)

{
∂tu−∆u = 0 in Rn × (0,∞)
u(x, 0) = u◦(x) for t = 0.

given by

(0.2) u(x, t) = 1/(4πt)n/2
∫
Rn

u◦(y)e−
|x−y|2

4t dy

(i) Prove that, for any bounded and uniformly continuous initial condition u◦ we have

‖u(t)− u◦‖L∞(Rn) → 0 as t ↓ 0

and
‖u(t)‖L∞(Rn) ≤ ‖u◦‖L∞(Rn)

(ii) Deduce that, for any k ∈ N, if u◦ ∈ Ck(Rn) and all its derivatives (up to order k)
are bounded and uniformly continuous then

‖u(t)− u◦‖Ck(Rn) → 0 as t ↓ 0

and
‖u(t)‖Ck(Rn) ≤ ‖u◦‖Ck(Rn)

Hint: To prove part (ii), apply (i) to the derivatives of u.

(4 points)

(3) Let u(x, t) be the solution of the heat equation (0.1) in Rn, given by (0.2).
Prove that, for any k ∈ N, if u◦ ∈ Ck(Rn) and all its derivatives (up to order k) are

bounded then

‖u(t)‖Ck+1(Rn) ≤
C

t1/2
‖u◦‖Ck(Rn)

for some constant C depending only on n and k.
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(3 points)

(4) Let u, v ∈ C∞(Ω× [0, T ]) be two solutions of the nonlinear Schrödinger equation{
i∂tu−∆u = f(u) in Ω× (0, T ]

u = 0 on ∂Ω× [0, T ]

with f ∈ C∞. Prove that

‖u(t)− v(t)‖L2(Ω) ≤ eCt‖u(0)− v(0)‖L2(Ω)

for some constant C.

(4 points)

(5) Let u ∈ C∞(Ω× (0, T )) be a solution of{
∂tu−∆u = f(u) in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

Prove that
d

dt

∫
Ω

(
1
2 |∇u|

2 − F (u)
)

= −
∫
Rn

|∂tu|2

where F ′ = f .

Note: This means that the “energy” of u is decreasing with time.

(3 points)

(6) A stationary solution U(x) of{
−∆U = f(U) in Ω

U = 0 on ∂Ω

is called asymptotically stable if there is an ε > 0 such that for any u◦ ∈ C(Ω) satisfying
u◦ = 0 on ∂Ω and

‖u◦ − U‖L∞(Ω) < ε

we have that the solution u(x, t) of

(0.3)

 ∂tu−∆u = f(u) in Ω× (0, T )
u = 0 on ∂Ω× (0, T )

u(x, 0) = u◦(x) for t = 0

exists for all time (that is, T =∞) and

lim
t→∞

u(x, t) = U(x) uniformly for x ∈ Ω.

Use the previous exercise to prove that if U ∈ C2(Ω) is an asymptotically stable
solution then

E(U) ≤ E(U+η) for all η ∈ C∞c (Ω) with ‖η‖L∞(Ω) < ε,

where E(w) =
∫

Ω

(
1
2 |∇w|

2 − F (w)
)
.

(3 points)
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(7) Let u ∈ C(Ω× [0, T ]) be a solution of{
∂tu−∆u = −u2 in Ω× (0, T ]

u = 0 on ∂Ω× (0, T ].

Prove that u(x, T ) ≤ 1/T , regardless of the initial data at t = 0.

Hint: Use the comparison principle.

(3 points)

(8) The KPP equation{
∂tu−∆u = u(1− u) in Rn × (0, T )
u(x, 0) = u◦(x) for t = 0

is one of the most classical reaction-diffusion PDEs, and models population dynamics.

(i) Prove that if 0 < u◦(x) < 1 for all x ∈ Ω then 0 < u(x, t) < 1 for all t > 0, x ∈ Ω.

(ii) Prove that for any e ∈ Sn−1 there is a travelling-wave solution of the type

u(x, t) = v(x · e− ct), v(z) =
1

(1 + e−βz)2

for some β > 0 and some c > 0.

(3 points)

(9) Derive the Navier-Stokes equations from physical principles.

(3 points)

(10) Let ~w ∈ C∞(Ω) be given.
(i) Prove that there exist functions ~w◦ : Ω→ Rn and q : Ω→ R, such that

~w = ~w◦ +∇q
div ~w◦ = 0 in Ω

and with q = 0 on ∂Ω.
(ii) Prove that such representation for ~w is unique. Thus, we may denote

~w◦ = Π~w,

the Leray projection of ~w.

(4 points)

(11) Let ~u ∈ C∞(Ω× (0, T )) be a solution of the Navier-Stokes equations

(0.4)

 ∂t~u+ (~u · ∇)~u = ν∆u−∇p in Ω× (0, T )
div ~u = 0 in Ω× (0, T )

~u = 0 on ∂Ω× (0, T )

Prove that
d

dt

∫
Ω
|~u|2dx ≤ 0

(3 points)



4

(12) Let ~u ∈ C∞(R2× [0, T )) be any solution of the Navier-Stokes equations (0.4) in Ω = R2,
and assume that both ~u and its derivatives converge uniformly to zero as |x| → ∞.

(i) Prove that, if we denote ~u = (u1, u2), then the vorticity

ω(x, t) := curl ~u = ∂x1u2 − ∂x2u1,

solves the PDE
∂tω + ~u · ∇ω = ν∆ω in R2 × (0, T ).

(ii) Deduce, by using the maximum principle (see Exercise 20 from Chapter 3), that

‖ω(t)‖L∞(R2) ≤ ‖ω◦‖L∞(R2) for all t ∈ (0, T ),

where ω◦ is the vorticity at time t = 0.

Note: This is the key estimate that allows to prove global existence (T = ∞) for the
Navier-Stokes equations in 2D.

(3 points)


	4. Nonlinear parabolic PDE and the Navier-Stokes equations

